First name	Last name	Email	Website	Home Dept.	Keywords	Research	Programs
Richard J.	Ablin	ablinrj@arizona.edu	https://profiles.arizona.edu/person/a	Pathology	cancer, immunobiology	Developement, diagnosis, progression, treatment cancer	UBRP
			<u>blinri</u>			(particularly prostate).	
Mary	Alt	malt@arizona.edu	https://sites.google.com/email.arizon a.edu/l4lab/home	Speech, Language, & Hearing Sciences	language disorder, intervention, statistical learning, bilingual, learning	I study how people learn words and the concepts associated with them. This includes people with and without language disorders, people of different area (although I do have a	UBRP
						specialty in young children), and people from different	
						linguistic backgrounds (bilingual). I am interested in	
						cognitive principles of learning and understanding of	
						ccience into annlied treatments for those with disorders and	
						into general education design to improve learning and	
						achievement.	
Jessica	Andrews-Hanna	jandrewshanna@arizona.eo	http://www.netlabgroup.com/	Psychology	memory, thought, cognition,	The research conducted in the Neuroscience of Emotion and	UBRP
					neuroscience, depression,	Thought (NET) Lab, directed by Dr. Jessica Andrews-Hanna,	
					Alzheimer's Disease	is centered on understanding the mysteries of our inner	
						thet make us unique as individuals. An ultimate and emotions	
						that make us unique as individuals. An ultimate goal of our	
						internally-guided cognition and live hannier, healthier lives	
						We explore the following questions across levels of brain and	
						behavior, drawing on techniques including functional MRI.	
						psychophysiology, and mobile experience sampling in daily	
						life.	
Julie	Armin	jarmin@arizona.edu	https://www.fcm.arizona.edu/profile/	Family and Community	cancer disparities, health behavior,	My research program is broadly focused on addressing	UBRP
			julie-s-armin-phd	Medicine	health systems	cancer disparities among historically marginalized	
						populations. I conduct community-informed and based	
						research with Latinx communities and people with	
						disabilities.	
A. Elizabeth (Betsy)	Arnold	arnold@ag.arizona.edu	http://www.arnoldlab.net	Plant Sciences	fungi, microbial ecology, Evolutionary	We are a diverse group of researchers and educators with	UBRP
					Biology, biodiversity, agriculture,	interests in the ecology, evolution, and potential applications	
					genetics	of symbioses. Our special focus is on the fungal portion of	
						plant microbiomes, with particular interest in foliar	
						endophytic lungi and the soliborne lungi that interact with	
						insect-associated fungi, and fungal-bacterial interactions	
						Our field sites range from the Arctic to tropical rainforests	
						and our skills encompass traditional microbiology field	
						ecology, phylogenetics, and genomics. We are increasingly	
						interested in the applications of fungal symbionts of plants in	
						smart agriculture. Our home is in the School of Plant	
						Sciences, UA College of Agriculture and Life Sciences but	
						we have collaborators and connections across UA's	
						interdisciplinary campus community and beyond.	
					1		1

Alex V.	Badyaev	abadyaev@arizona.edu	http://www.u.arizona.edu/~abadyaev	Ecology & Evolutionary Biology	Evolutionary ecology, development, behavior, life history, genetics, biochemistry	In our integrative research group, we study evolution and development of biological diversity on many levels of organization from molecular genetics, physiological and developmental mechanisms, to behavioral and ecological dimensions. We work primarily on birds and mammals and benefit tremendously from long-term field study sites we have established in diverse ecosystems of southern Arizona and across western North America.	UBRP
E. Fiona	Bailey	ebailey@arizona.edu	https://baileylaboratory.wixsite.com/ my-site-2	Physiology	cardiovascular, autonomic, respiratory, clinical trial	The Arizona Respiratory Neurophysiology laboratory (ARNL) research focus is respiratory control and specifically, how breathing may be used to regulate blood pressure. Beginning in 2013, we have spearheaded research using a form of respiratory exercise training known as Inspiratory Muscle Training (IMT) demonstrating its potential to lower blood pressure and improve cardiovascular health in older adults with hypertension and obstructive sleep apnea. Our work is supported by NIH/National Institute on Aging.	UBRP
David A.	Baltrus	baltrus@arizona.edu	http://www.baltruslab.com/	Plant Sciences	Evolution, bacteria, genetics, genomics, Host-Microbe	The Baltrus lab investigates the genetic and genomic basis of interactions between bacteria and other organisms. We are interested in how the pathways underlying these interactions evolve over time and how these interactions are shaped by genetic and environmental contexts.	UBRP
Christopher	Banek	cbanek@arizona.edu	<u>https://physiology.arizona.edu/lab-</u> <u>page/banek-lab</u>	Physiology	physiology, neuroscience, surgery, nephrology, medicine	We are an integrative physiology laboratory, studying the nexus between the heart, brain, and kidneys in the regulation of blood pressure. Our lab is primarily focused on elucidating the effects of renal denervation (RDNx), a method that interrupts nerve signaling to and from the kidney, on chronic blood pressure and kidney function in models of cardiovascular and kidney disease. Further study and refinement of RDNx can lead to the next generation of high blood pressure and kidney disease treatment, beyond or complementary to conventional drug or lifestyle intervention.	UBRP
Carol A.	Barnes	carol@nsma.arizona.edu	https://www.embi.arizona.edu/	Psychology	aging, memory, behavior	The Barnes Lab research program involves behavioral, electrophysiological and molecular biological approaches to the study of young and aged rodents and non-human primates. This work provides a basis for understanding the basic mechanisms of normal aging in the brain and sets a background against which it is possible to assess the effects of pathological changes such as Alzheimer's disease.	UBRP

Jennifer K.	Barton	barton@arizona.edu	http://bmeoptics.engr.arizona.edu/	Biomedical Engineering	imaging, optical, fluorescence, instrumentation, cancer detection, endoscopes	I work on developing novel optical imaging techniques for early detection of cancer. This often involves developing miniature endoscopes to access the tissue of interest. Projects in the lab involve optical design, mechanical design, instrumentation, and software development. We work with human specimens, in vivo human and animal studies.	NACP, UBRP
Ken	Batai	kbatai@arizona.edu	https://cancercenter.arizona.edu/per son/ken-batai-phd	Department of Urology	cancer health disparities, Health Equity, Kidney Cancer, Prostate Cancer	My research projects aim to identify genetic, biologic, and social/behavioral factors causing cancer health disparities and develop strategies to improve cancer care in racial/ethnic minority groups. My past and current research focuses on prostate cancer and kidney cancer in underserved racial/ethnic minority groups.	NACP
Paloma	Beamer	pbeamer@arizona.edu	https://publichealth.arizona.edu/dire ctory/paloma-beamer	Community, Environment & Policy	Exposure Science, environmental justice, children's health, Health disparities	Dr. Beamer uses field sampling, GIS, computer modeling and laboratory techniques in her research. She has led multiple studies to collect of multi-media exposure samples for metals, pesticides and VOCs with minority and rural populations. She has also developed an exposure and dose simulation model for children's exposures to pesticides, a model that quantifies the transport of outdoor contaminants to the home environment, and a model focused on transfer of viruses via hand contacts. Dr. Beamer is also an expert in the collection and quantification of key exposure factors aimed at improving risk assessment and is funded by EPA to gather data on children's dust and soil ingestion. She is also funded by NIH for a to conduct a clinical trial to assess the effectiveness of a promotoras intervention at reducing exposures in small businesses like auto repair shops or beauty salons. During the COVID-19 pandemic that project has been expanded to include a "tele-promotora‮rogram and to understand how work practices and risk perceptions have changed during the pandemic. Her lab is participating in a binational birth cohort to assess the role of environmental microbiome in drinking water and house dust on development of childhood respiratory diseases.	UBRP
Mark	Beilstein	mbeilstein@arizona.edu	https://cals.arizona.edu/spls/content/ mark	Plant Sciences	Evolution, phylogeny, cell signaling	My lab is interested in the evolution of mechanisms responsible for cell-cell communication in plants. We use species in the plant family Brassicaceae to decipher the cell signaling system that allows successful fertilization. We routinely genetically modify plants, including the use of CRISPR-Cas systems to mutate or differentially regulate genes of interest.	UBRP
Martha	Bhattacharya	marthab1@arizona.edu	http://marthabhattacharya.lab.arizon a.edu/	Neuroscience	neurodegeneration, Autophagy, cell biology, genetics, behavior	Understanding early cellular events common to many neurodegenerative diseases through the lens of genetics. We use cell culture, mice, and Drosophila and do imaging and biochemical assays.	UBRP

Joseph	Blankinship	jblankinship@arizona.edu	https://profiles.arizona.edu/person/ib lankinship	Environmental Science	soil ecology, plant-soil interactions, desert agriculture, ecological restoration, carbon sequestration, dust prediction and mitigation	My team's current research tackles grand environmental and agricultural challenges in arid and semi-arid regions of the world that are linked to soil health, including dust mitigation, ecological restoration, soil carbon sequestration, and improving the efficiency of water and fertilizer use in croplands.	UBRP
Timothy	Bolger	tbolger@arizona.edu	<u>http://mcb2.arizona.edu/tbolger/Lab</u> <u>site/Bolger Lab Home.html</u>	Molecular & Cellular Biology	RNA, translation, yeast, genetics, biochemistry, cancer	Stress is a part of life, even on the cellular level. To survive and adapt to stresses such as nutrient deprivation or temperature shock, cells have to alter gene expression, especially protein translation, the most energy-intensive process in cells. Changes in the translational stress response have been implicated in multiple human pathologies, including cancer and aging. In the Bolger lab, we study translation regulation with a major emphasis on how it is altered during different stresses. Specifically, we have focused on the DEAD-box RNA helicase family, which is critical in many steps of gene expression. Current projects in the lab are uncovering the mechanisms underlying the function and regulation of Ded1, a helicase that plays important roles in translation, as well as the role of mutations in the Ded1 ortholog in medulloblastoma, a pediatric brain cancer.	Beckman, UBRP
Heidi	Brown	heidibrown@arizona.edu	https://brownlab.arizona.edu/	Epidemiology & Biostatistics	vector-borne and zoonotic disease, epidemiology, data analysis, risk mapping	My research interests are the intersection of environment, hosts (human and other animal) and disease. I use data analysis tools to identify environmentally driven risk of disease. While my interests are primarily in vector borne and zoonotic disease, I also work on infectious causes of cancers and climate related diseases (such as heat related illness). I use mapping techniques to visualize the analyses I complete.	UBRP

Judith K.	Brown	jbrown@ag.arizona.edu	https://cals.arizona.edu/spls/content/ judith	Plant Sciences	emerging plant virus diseases, insect vector-pathogen interactions biology, molecular pathology, next generation sequencing/discovery, phylogenomics, RNA interference	We work on emerging plant viruses transmitted by insect vectors in annual and perennial agricultural crops such as cotton, citrus, cacao, tomato, beans, among others. We use cutting edge molecular and omics tools for detection, characterization, and 'discovery' of new viral pathogens and fastidious bacteria. We also study insect vector-pathogen interactions using RNA interference (dsRNA) to knock down insect genes essential for facilitating the transmission pathway, both to illuminate the transmission pathway itself, and for potential mitigation either resulting in mortality or reduced transmission. Recently we initiated a project to study seedborne viruses in legumes, with an emphasis on common bean and tepary bean, the latter which is native to the southern US and Mexico, and has been cultivated as a source of superior protein and nutrition by the indigenous peoples of north and central America for hundreds of years. We are interested on the potential interactions between biotic stress resulting from virus infection and drought tolerance in tepary bean.	UBRP
Michael	Brown	mfbrown@u.arizona.edu	<u>https://cbc.arizona.edu/faculty/micha el-brown</u>	Chemistry and Biochemistry	biomembranes, membrane proteins. GPCRs, rhodopsin, vision	The molecular basis of visual excitation is investigated by studies of rhodopsin in a membrane lipid environment. A combination of biochemical techniques together with spectrophotometry is used to study how the membrane lipids and water govern the activation of the visual photoreceptor and its interactions with downstream effector proteins.	UBRP
Ross	Buchan	rbuchan@arizona.edu	http://mcb2.arizona.edu/buchan/	Molecular & Cellular Biology	RNA, protein, genetics, Stress, Biomolecular Condensates	My lab studies how eukaryotic cells respond to changing environments such as stress, by inducing the assembly of mRNA-protein cytoplasmic foci called stress granules and P- bodies. These liquid-like organelles are implicated in regulating mRNA function, cell signaling and other cellular processes, and aid in cell survival under stress. However, persistent or aberrant assembly of stress granules in particular is linked to neurodegenerative diseases and cancer. Recently, our lab has also become interested in a novel mechanism by which cells degrade a protein called TDP-43, whose mislocalization and accumulation is thought to be pathogenic in amyotrophic lateral sclerosis and other neurodegenerative diseases. We use yeast and human cell line model systems, and frequently use genetic, biochemical and microscopy methods.	Beckman, UBRP

Haijiang	Cai	haijiangcai@arizona.edu	https://neurosci.arizona.edu/person/ haijiang-cai-phd	Neuroscience	neuroscience, Neural circuits, animal behavior, anorexia, optogenetics, electrophysiology	We are studying the neural circuits of animal behaviors in health and disease, with a focus on understanding how the neural circuits regulate eating and emotional behaviors such as fear, anxiety, and depression. We use multidisciplinary approaches include transgenic mice, optogenetics, chemogenetics, in vivo calcium imaging, behavioral assays, brain slice electrophysiology, virus and non-virus based neuronal tracing, stereotaxic injection and immunohistology.	UBRP
Andrew P.	Capaldi	capaldi@arizona.edu	http://mcb2.arizona.edu/capaldilab/	Molecular & Cellular Biology	cell signaling, Cell growth control, systems biology	We are interested in how cells regulate their growth and metabolism in response to environmental cues, such as nutrients, stresses and hormones. This works centers around studying the signaling through the Target of Rapamycin kinase Complex I (TORC1) and cAMP dependent protein kinase (PKA) pathways. We are especially interested in determining how signals are transmitted to these kinases, how they complexes process that information and then act on downstream proteins to alter the cell function. This work requires the use of Genetics, Systems Biology and Biochemical approaches.	UBRP
Paul	Carini	paulcarini@arizona.edu	http://www.CariniLab.com	Environmental Science	microbiology, microbial physiology, genomics, genetics, Soil, marine	We apply system biology approaches of environmental bacteria to understand how microbes in soil, marine, and host associated environments function. We are particularly interested in understanding the genetic mechanisms of how microbes persist in nutrient sparse environments.	UBRP
Yves	Carriere	ycarrier@ag.arizona.edu	https://www.cals.arizona.edu/ento/c ontent/yves-carri%C3%A8re	Entomology	Entomology, insect	We work on management of resistance to transgenic Bt crops and development of integrated pest management for insect pests.	UBRP
Eugene H	Chang	echang@arizona.edu	https://changlab.medicine.arizona.ed u/	Otolaryngology	chronic rhinosinusitis, molecular biology, airway	Our lab focuses on the molecular response of airway epithelial cells to pathogens responsible for chronic sinusitis.	UBRP

Yin	Chen	ychen@pharmacy.arizona. edu	https://www.pharmacy.arizona.edu/d irectory/profile/yin-chen-phd	Pharmacology & Toxicology		Airway epithelial differentiation and mucous cell metaplasia in chronic airway diseases. Airway rhinovirus (RV) infection is the major cause of asthma exacerbation, a severe precipitation of the symptom in otherwise stable asthmatics	EHS-TRUE
						who are often still under the routine medication. Thus, asthma exacerbation may have a different pathogenic mechanism that is largely unknown at present. Among different asthma-inducing allergens, Alternaria (Alt) is a fungal species that causes asthma in arid and semi-arid areas. In collaboration with the researchers in Arizona Respiratory Center, we have found the shift of airway response to viral infection during Alt exposure, which promotes inflammation and depresses antiviral response. This shift causes further increase of viral production and inflammation, similar to what would happen in the airways of asthma exacerbation. We are currently investigating the potential underlying mechanisms using both in vivo and in vitro models.	
Nathan	Cherrington	cherrington@pharmacy.ari zona.edu	https://www.pharmacy.arizona.edu/d irectory/profile/nathan-cherrington- phd-ats	Pharmacology & Toxicology	Drug Transport, drug metabolism, Adverse Drug Reactions	Current research interests include the molecular mechanisms of liver toxicity and regulation of drug metabolizing enzymes and transporters. Major emphasis has been placed on the role and regulation of these enzymes and transporters during fatty liver disease and cholestasis. Additionally, we are interested in the potential use of endogenous drug transporters to "piggyback" drug therapies across the blood-testis barrier. Our two major research projects include: Altered Drug Metabolism and Disposition in NAFLD Xenobiotic Transporters at the Blood-Testis Barrier	EHS- TRUE, UBRP, ASPET
Ying-Hui	lChou	lyinghuichou@arizona.edu	https://yinghuichou.wixsite.com/tmsl ab	Psychology	transcranial magnetic stimulation, Magnetic Resonance Imaging, Alzheimer's Disease, mild cognitive impairment, cognitive aging	My research has focused primarily on the cognitive and clinical neuroscience of aging and neurodegenerative disorders. Within this framework, my laboratory is particularly interested in integrating magnetic resonance imaging (MRI) and transcranial magnetic stimulation (TMS) techniques to 1) develop MRI-guided therapeutic TMS protocols and 2) explore TMS-derived and image-based biomarkers for early diagnosis and prediction of therapeutic outcomes for individuals with neurodegenerative disorders. I am the Director of Brain Imaging and TMS Laboratory and leading an NIH-funded R01 clinical trial to test MRI-guided hippocampal TMS on memory function in patients with mild cognitive impairment. I teach undergraduate and graduate courses such as cognitive neuroscience, brain rehabilitation, and brain connectivity in the Department of Psychology.	UBRP

Jared	Churko	jchurko@arizona.edu	https://heartresearch.us/	Cellular & Molecular Medicine	heart disease, stem cells, genetic engineering, bioinformatics, tissue engineering	The Churko lab uses human induced pluripotent stem cells (hiPSCs) to study heart disease. These cell are capable of forming all cell types within the body and can be created from all patients. Specifically, our lab generates hiPSCs from patients that have heart disease, differentiates these hiPSCs into cardiomyocytes (heart cells) and studies how disease cardiomyocytes are different than normal cardiomyocytes. We specialize in using transcriptomics (RNA-seq), gene editing (CRISPR/Cas9), and bioinformatics.	UBRP
Brett A.	Colson	bcolson@arizona.edu	http://cmm.arizona.edu/profile/brett- colson-phd-0	Cellular & Molecular Medicine	Cardiovascular Physiology, Biophysics, molecular biology, structure-function, drug screening, genetic disease, muscle, fluorescence	The Colson lab aims to decipher the structural basis for cardiac and skeletal muscle contraction at the molecular level in healthy physiology and disease. We study human proteins of muscle cells using biophysical methods such as fluorescence. Our studies include key variables such as Ca2+ and ATP in contraction, phosphorylation during stress, and mutations that cause genetic disease. We aim to understand how contraction works at the molecular level, what goes awry in disease, and identify new therapies to treat cardiac and skeletal muscle diseases.	UBRP
Zelieann	Craig	zelieann@arizona.edu	https://profiles.arizona.edu/person/z elieann	Animal & Comparative Biomedical Sciences	infertility, reproductive toxicology, toxicology	Dr. Craig's research involves using laboratory mice as a tool to model human relevant environmental exposures and their effects on female reproductive health. Her work characterizing toxicities associated with endocrine disrupting chemicals is aimed at enhancing our understanding of how chemical exposures alter ovarian function and cause adverse reproductive outcomes such as infertility and early menopause.	EHS- TRUE, UBRP

Abhijit	Date	abhijitdate@arizona.edu	https://www.pharmacy.arizona.edu/d irectory/profile/abhijit-date-phd	Pharmacology and Toxicology	drug delivery, Nanomedicine, Self- assembling nanocarriers, Ionic Liquids, Drug Repurposing, infectious	The D-PReD research group's overall research goal is to reformulate hydrophilic and hydrophobic drugs to improve their a) physicochemical and biopharmaceutical properties,	ASPET, UBRP
					diseases	oral of local bioavailability, in vivo efficacy and to facilitate their repurposing for the treatment of cancer, infectious diseases, and inflammatory disorders. The ongoing projects in the D-PReD research group include 1) drug repurposing and reformulation for the treatment of genital and ocular herpes simplex virus infections 2) drug repurposing and reformulation for the treatment of cryptococcal meningitis, 3) drug repurposing and reformulation for the treatment of systemic and mucosal candidiasis, 4) drug repurposing and reformulation for the treatment of acute myeloid leukemia, and 5) drug repurposing and reformulation for the treatment of inflammatory bowel disease. The D-PReD research group has strong ties with highly reputed collaborators with expertise in virology (University of Illinois Chicago), mycology (University of Minnesota & University of California Los Angeles), and cancer biology (Penn State Cancer Institute) to facilitate the translation of repurposed drugs.	
Katrina	Dlugosch	kdlugosch@arizona.edu	http://dlugoschlab.arizona.edu/	Ecology & Evolutionary Biology	Evolutionary ecology, ecological genomics, population genetics, bioinformatics, invasive species, range limits, Genetic Variation, genetics of adaptation, genetic bottlenecks, Plants, microbes	Our group is interested in the rapid evolution of species distribution and abundance on human timescales, particularly in invasive species that are colonizing new locations, as well as in native species responding to environmental change. We are working to understand how genetic and environmental variation in these species translate into phenotypic diversity, adaptation, and changes in ecologically important traits. Colonization events are fundamental parts of the evolution and ecological interactions of all organisms: they shape species distributions, provide opportunities for population differentiation and adaptation, and can initiate the formation of new species. The study of rapid evolutionary responses to environmental variation can therefore inform both applied conservation questions about the fate of invasive or threatened species, and fundamental research into how biological diversity itself evolves. We use the tools of field ecology, quantitative genetics, genomics, and bioinformatics to ask specific questions about how traits are evolving, how genetic variation is distributed geographically, how ecological interactions differ among genotypes, and how genetic differences translate into changes in population dynamics and species distributions. Most of our current work involves plants and microbes.	Beckman, UBRP

Frank A.	Duca	faduca@arizona.edu	<u>https://profiles.arizona.edu/person/fa</u> <u>duca</u>	Animal & Comparative Biomedical Sciences	Obesity, diabetes, gut, intestine, microbiota, microbiome, prebiotics, probiotics, metabolic disease, metabolism	The Duca lab examines the role of the gastrointestinal tract in the development of metabolic disease. Our research focuses on how the gut can sense ingested nutrients and signal to the brain to regulate energy and glucose homeostasis. We are interested in how different diets, like those high in fat or sugar or fiber can impact these gut-brain signaling pathways. Additionally, we are interested in how the gut microbiome contributes to the development of obesity and diabetes, and how specific bacteria or metabolites produced by bacteria can influence energy and glucose homeostasis at the level of the intestine, liver, and brain.	UBRP
Renee A.	Duckworth	rad3@arizona.edu	http://www.u.arizona.edu/~rad3/	Ecology & Evolutionary Biology	integrative biology, Evolution, ecology, behavior	Current projects in my lab include 1) eco-evolutionary feedbacks between behavioral change and population density, 2) investigating proximate epigenetic basis of maternal effects on dispersal strategies 3) investigating neuroendocrine mechanisms and developmental constraints on personality traits 4) comparative studies across vertebrates on evolution of traits that affect species diversification.	UBRP
Jamie	Edgin	jedgin@arizona.edu	https://mddlab.faculty.arizona.edu/	Psychology	development, disability, Sleep, memory, autism, Down syndrome	I study sleep, memory, and dreams in sleep disorders, particularly developmental and learning disabilities (Down syndrome, autism, and ADHD). Current studies include the relationship between sleep and creativity and exercise, memory, and sleep.	UBRP
Torsten	Falk	tfalk@arizona.edu	https://profiles.arizona.edu/person/tf alk	Neurology	translational research, Parkinson's disease, rodents	Our research focuses on cellular and rodent models to test 1) novel pharmacological treatments for L-DOPA-induced dyskinesias, a major side effect of Parkinson's disease (PD) treatment, 2) novel neuroprotective (growth factor mediated) gene therapy approaches to treat PD, and 3) development of glycopeptides for the treatment of PD.	UBRP
Bentley A.	Fane	bfane@arizona.edu	https://immunobiology.arizona.edu/p rofile/bentley-fane-phd	Plant Sciences	Virology, genetics, biochemistry	The assembly of viruses inside infected cells involves numerous protein-protein interactions. These interactions are often orchestrated by scaffolding proteins. Analogous to scaffoldings used in building construction, these proteins ensure the integrity and efficiency of progeny formation but are not found in the final product. After the capsid is assembled, the viral genome must be condensed to concentrations approaching 500 mg/ml to fit inside it. Once the virus is assembled, it must transport its genetic material to the next cell to be infected. The broad objective of our research program is to elucidate the molecular mechanisms involved in scaffolding-mediated assembly, single-stranded DNA packaging, and the transportation of the viral genome through a specialized DNA-translocating conduit when infecting the next cell.	UBRP

Jean-Marc	Fellous	fellous@arizona.edu	http://amygdala.psychdept.arizona.e du/lab.html	Psychology	neurophysiology, optogenetics, Behavioral neuroscience, modeling, Robotics	We are interested in understanding how the brain deals with complex behaviors. We use rats and complex navigation tasks in large environments, in environments with moving or fixed obstacles, in 3D environments, and in environments where rats interact with moving robots. We record wirelessly from several brain areas involved in navigation (hippocampus), decision making (prefrontal cortex) and emotions. We also use computational techniques to simulate neural activity and generate new hypotheses.	UBRP
Ralph	Fregosi	fregosi@arizona.edu	https://physiological- sciences.arizona.edu/faculty- members	Physiology	neurophysiology, respiratory physiology, nicotine, brain development, motor neurons, synaptic transmission	We study how the motor neurons that control the muscles of breathing develop, and how perinatal exposure to neurotoxins alters their normal development. The neurotoxin currently under study is nicotine. Our experimental focus is on alterations in the motor neuron biophysical properties, synaptic transmission, neurotransmitter receptor expression and gene expression. Mainstay techniques include whole cell patch clamp electrophysiology, measures of breathing in awake animals, extracellular recording of motor nerves, electromyography, immunocytochemistry, pharmacology and RNA sequencing.	UBRP
Francine	Gachupin	fcgachupin@arizona.edu	https://www.fcm.arizona.edu/outrea ch/american-indian-youth-wellness- initiative	Family and Community Medicine	Behavioral risks, Obesity, Native American/American Indian	The American Indian Youth Wellness Camp focuses on youth aged 10-15 years old and their primary parent/caregiver towards a healthy lifestyle. The six month intervention focuses on physical activity, nutrition, mental wellness, all within a cultural context. Assessments are completed at baseline, 3 months and 6 months to assess changes. Due to COVID-19, the intervention is delivered as 'Camp in a Box.'	NACP, UBRP

Rachel	Gallery	rgallery@arizona.edu	http://rachelgallery.arizona.edu	School of Natural Resources & the Environment	Aridlands, ecology, fungi, microbes, Natural Resources, Soil, Watershed	Plant-microbe interactions and feedbacks are important but cryptic components of how ecosystems function and respond to change. Microbes play a significant role structuring plant communities through positive and negative interactions, and the diversity of soil microbiota controls the processes governing biogeochemical cycling in soils. As we consider the threat of species loss and how plant communities will continue to shift under rapidly altered temperature and precipitation regimes, understanding these feedbacks emerges as a critical focus for plant community ecology, ecosystem science, and conservation ecology. Working across a range of ecosystems from lowland Neotropical and high elevation conifer forests to semi-arid grasslands and tropical alpine wetlands, our research group combines ecological experiments, microbiological techniques, and contemporary genetic and metagenomic tools to develop hypotheses to test the effects of plant- microbe interactions on plant community richness and	UBRP
						species abundance, understand how environmental shifts will alter these interactions, and accurately predict the subsequent impacts on ecosystem function.	
Carol	Gregorio	gregorio@arizona.edu	https://mcrp.med.arizona.edu/resea ch_gregorio_overview.html	Cellular & Molecular Medicine	cell biology, cardiovascular science, heart disease	Our goal is to identify the molecular components and pathways that are responsible for the contraction (beating) of the heart. We take the approach of studying human mutations that result in heart and skeletal muscle disease - and then work backwards to identify the mechanisms that are responsible for disease phenotypes.	UBRP
Ryan N.	Gutenkunst	rgutenk@arizona.edu	http://gutengroup.mcb.arizona.edu	Molecular & Cellular Biology	computational biology, modeling, bioinformatics, systems biology, population genetics, Evolution	We study the function and evolution of the complex molecular networks that comprise life. To do so, we integrate computational population genomics, bioinformatics, and molecular evolution. We also prepare group members for fulfilling professional lives. Our group is interdisciplinary and collaborative, with an atmosphere that promotes creativity.	Beckman, UBRP

Michael F.	Hammer	mfh@arizona.edu	http://hammerlab.biosci.arizona.edu/	BIO5	Epilepsy, transcriptome, mouse	Currently I am deeply committed to translational research in	UBRP
					model, rare disease registry	epilepsy and brain disorders, making use of more than 25	
						years of experience innovating in human genetics, clinical	
						genomics, transcriptomics, and systems biology approaches.	
						A turning point in my research career began with my team's	
						discovery of new gene implicated in pediatric epilepsy. In	
						one of the first applications of whole genome sequencing for	
						rare variant identification. my research team discovered the	
						de novo SCN8A mutation that caused my daughter's	
						epilepsy. We subsequently established mouse models with	
						the pathogenic variant discovered in my daughter, and in	
						2018 an induced pluripotent cell line was established from	
						my daughter's 22-year-old cord blood sample in the	
						laboratory of Dr. Lalitha Madhavan. This cell line now forms	
						the basis of translational research making use of both the	
						mouse and the human models. A common theme across	
						much of the mouse and human work is a systems biology	
						annoach that links transcriptomic alterations to	
						nhysiological processes that play a role in different stages of	
						disease development and the use of nathway enrichment	
						analyses to identify disease modifying physiological	
						nathways. This work points to the importance of	
						mitochondrial POS parinharal sytockalatal romodaling and	
						the role of blood brain barrier discustion in the	
						nathenbysiology of nourologic disease. Lam also passionate	
						a hour finding alternative therearies terrating law collular	
						about finding alternative therapies targeting key cellular	
						pathways that are altered in epileptogenesis and testing	
						them in these models.	
Nancy C.	Horton	nhorton@arizona.edu	https://sites.google.com/view/horton-	Molecular & Cellular	structural biology, Evolution,	The Horton lab uses a combination of biochemical and	Beckman,
			lab/home	Biology	biochemistry, enzyme regulation,	biophysical methods to investigate various topics of interest	UBRP
					protein science, Mechanisms of	including mechanisms of autoimmune disease, host-viral	
					disease	interactions, and enzyme regulation. Methods include x-ray	
						crystallography, analytical ultracentrifugation, rapid enzyme	
						kinetics methods. fluorescence. thermodynamics. molecular	
						modeling, and crvo-electron microscopy.	
Flizabeth	Hutchinson	hutchinsone@arizona.edu	https://bme.engineering.arizona.edu/	Biomedical Engineering	Magnetic Resonance Imaging Pre-	Dr. Hutchinson's research interests include: radiologic-	LIBRP
22000011			faculty-staff/faculty/elizabeth-	Storregion Engineering	clinical rodent and ferret models	nathologic correspondence studies to associate imaging	
			hutchinson		Traumatic Brain injury Enilensy	markers with their biological underningings, the	
			<u>natemison</u>		Diffusion MRI	development of processing and analysis tools for multi brain	
						studies, the identification of imaging markers in human	
						similar models of injury and fixed specimen studies to	
						establish the translational relevance of nevel imaging	
						markers. Her surrent research artistics continue to surlar	
						inarkers. Her current research activities continue to explore	
						and apply advanced neuroimaging approaches through the	
						use of translationally relevant models and pre-clinical	
						neuroimaging across a range of spatial scales and	
1			1		1	Imodalities	1

John	Jewett	jjewett@arizona.edu	https://sites.google.com/site/jcjewett lab	Chemistry and Biochemistry	Bioorganic, Chemical Biology, Synthesis/Synthetic Methods Development, organic chemistry, Virology	We develop new reactions and probes to interrogate challenging biological environments, from viruses to mosquitos.	UBRP
Dongkyun	Kang	dkkang@arizona.edu	https://wp.optics.arizona.edu/dkang/	Optical Sciences	optical microscopy, point-of-care diagnosis, cancer diagnosis, low- resource setting research	The Translational Optical Imaging lab develops low-cost optical imaging devices for medical applications in low- resource settings. Our low-cost microscopy devices have been used for imaging skin and cervix in Uganda. Currently, our research is focused on eye imaging, anal cancer diagnosis, and melanoma diagnosis.	UBRP
Emmanuel	Katsanis	katsanis@peds.arizona.ed u	https://cancercenter.arizona.edu/per son/emmanuel-katsanis-md	Pediatrics	hematopoietic cell transplantation, graft versus leukemia, tumor immunology, transplant immunology, cancer vaccines	My research areas are cancer immunology-immunotherapy and hematopoietic stem cell transplantation. I have a particular interest in haploidentical hematopoietic cell transplantation, cell therapies, and immumodulatory agents. Current work in my laboratory is focused on pre- and post- transplant immune modulation by selective chemotherapeutic agents and their effects on immune reconstitution, viral reactivation, graft-versus-host disease and graft-versus-tumor effects and in development of cancer vaccines.	NACP, UBRP
Aneta	Kielar	akielar@arizona.edu	https://akielar.faculty.arizona.edu/co ntent/3	Speech, Language, & Hearing Sciences	cognitive neuroscience, neuroimaging, dementia, neurogenic language disorders, neuromodulation	My research program is centered on investigating the neurobiology of healthy language system, and changes in cognitive and language processing associated with stroke and neurological disorders. My interests include incorporating cognitive measures and multimodal neuroimaging methods, with a goal to understand the relationship between language and other aspects of cognition, as well as the neural dynamics related to brain damage, resilience, and recovery. My research efforts are directed towards identifying factors which affect language comprehension and production, and how these change with development and are influenced by aging, stroke, brain injury, and neurodegenerative disorders, including Primary Progressive Aphasia (PPA) and Alzheimer's disease (AD). I study language processing at the multiple levels, using behavioral experiments and both structural (DWI, lesion- symptom mapping, voxel-based morphometry) and functional neuroimaging (fMRI, EEG, MEG). In addition, I am interested in neuroplasticity and application of noninvasive brain stimulation techniques to enhance treatment of aphasia and dementia. The long-term goal of my research is to understand the cognitive and neural processes that support recovery of cognitive and language functions after stroke.	UBRP

Minkyu	Kim	minkyukim@arizona.edu	http://kim.lab.arizona.edu/	Materials Science and Engineering	Biopolymer, Protein Design, biomolecular engineering, Self- assembly, biomaterials	The overarching goal of the Kim research group is to develop functional biopolymer materials for targeted applications in healthcare, environmental safety, and national defense. Kim research group is currently developing (a) mechanically responsive soft materials that capture performances of living materials (e.g. reversible deformability red blood cells, and strength and toughness of muscle), (b) biopolymer materials to mitigate various microbial infections and promote wound healing, and (c) biopolymer coating on metallic implant for enhanced interactions with skin and soft tissue.	UBRP
Michael S.	Kuhns	mkuhns@arizona.edu	<u>https://immunobiology.arizona.edu/r</u> esearch/kuhns-lab	Immunobiology	immunology, immunotherapy, T cell activation, cancer, autoimmunity	My lab is engaged in both basic research and biomimetic immune engineering. Our basic research is broadly focused on increasing our understanding of how T cell fate decisions are made (e.g. development, activation, differentiation, effector functions), while our biomimetic engineering projects draw upon our knowledge of the multi-subunit receptor complexes that drive these fate decisions to develop novel immunotherapeutic reagents that can influence T cell responses to vaccines or tumors, prevent transplant rejection, or attenuate autoimmunity.	UBRP
Paul R.	Langlais	langlais@arizona.edu	https://deptmedicine.arizona.edu/pro file/paul-r-langlais-phd	2 Medicine	Protein signal transduction, Type 2 diabetes, Insulin-stimulated glucose transport, Microtubule and actin dynamics, Vesicle trafficking, cell biology	In the Langlais Lab, we figure out how insulin stimulates glucose transport into muscle and fat, a mechanism that is dysfunctional in type 2 diabetes. Specifically, we first discover new proteins involved in this process, and second, using cell biology techniques combined with quantitative proteomics approaches, we characterize the exact roles of these proteins in insulin action. Lately, we have become obsessed with figuring out how proteins control microtubules and actin within the context of insulin signaling. Both of these cytoskeletal elements are crucial for proper insulin-stimulated glucose transport, but, little is known how they are controlled and how they cooperate. So, we explore the unknown, with the hope being to eventually help people get better. Our mantra is simple: you can't fix it till you know how it works.	UBRP
Daniel	Lətt	dlatt@arizona.edu	http://www.linkedin.com/in/danlatt	Orthopedic Surgery	Orthopaedic Biomechanics, Flatfoot, Gait, Functional Imaging, ultrasound, Outcomes	My lab focuses on studying degenerative disease of the ligaments and tendons of the foot using a number of biomechanical techniques including: human movement analysis, strain based ultrasound imaging, exvivo (cadaveric) modelling, patient reported outcomes and computational modelling.	UBRP

Kevin	Lin	klin@math.arizona.edu	https://www.math.arizona.edu/~klin	Mathematics	Nonlinear dynamics & chaos, data driven modeling, Computational Neuroscience drug delivery, Nanomedicine	I use (and sometimes develop) mathematical and computational tools to study the dynamics of complex physical and biological systems. Increasing, my work involves data-informed and data-driven modeling. I am especially interested in computational neuroscience, i.e., the study of information processing in the brain.	UBRP
			TICDS.// Jangino.wixsice.com/ Jangino	Toxicology	Pharmaceutics and Pharmacokinetics, Nano-ImmunoEngineering, cancer immunotherapy, Chemotherapy, biomaterials	safe, and efficacious therapeutics at the interface of drug delivery, synthetic chemistry, pharmaceutics, nanotechnology, and tumor immunology to address the pressing unmet needs in current cancer and other diseases therapy and prevention, particularly in the emerging field of combination immunochemotherapy.	TRUE, UBRP
Michael	Marty	mtmarty@arizona.edu	https://marty.lab.arizona.edu/	Chemistry and Biochemistry	Membrane proteins, mass spectrometry, biochemistry, lipid membranes, Analytical Chemistry	Research in the Marty Lab centers on developing new technologies to study interactions at biological membranes, with a special focus on combining lipoprotein nanodiscs and native mass spectrometry. One aspect of his research focuses on characterizing membrane protein-protein and membrane protein-lipid interactions. Membrane proteins are important drug targets, and the Marty lab seeks to understand how lipids influence membrane proteins important in a range of diseases.	Beckman, UBRP
Joanna	Masel	masel@arizona.edu	http://www.eebweb.arizona.edu/facu lty/masel/people/joanna/	Ecology & Evolutionary Biology	Evolutionary theory, bioinformatics, protein evolution, COVID-19 risk analysis	I run a "dry lab" doing a mixture of mathematical, simulation, and bioinformatic work. We study a range of topics including the interplay between relative and absolute forms of competition, the load posed by deleterious mutations, the birth of new proteins and their subsequent long-term evolutionary trajectories, the evolution of error rates in molecular processes, and optimizing test and quarantine regimes for COVID-19.	Beckman, UBRP
Brian S.	МсКау	bsmckay@eyes.arizona.ed u	https://eyes.arizona.edu/research/mc kay-lab	Ophthalmology & Vision Science	retina, blindness, RPE, pigment, age- related macular degeneration, AMD	Age-related macular degeneration (AMD) is the leading cause of irreversible blindness. AMD occurs when the retinal support tissue, the retinal pigment epithelium (RPE), fails and is lost with aging. We discovered that a specific receptor on the RPE controls the support function of the RPE, and have developed strategies to augment RPE function in support of the retina. In the McKay lab we study the RPE cells to identify strategies to bolster RPE function and survival. Our models include primary cell isolates and protein chemistry methods.	UBRP

Giovanni	Melandri	gmelandri@arizona.edu	<u>https://cals.arizona.edu/spls/content/giovanni</u>	Plant Sciences	drought, heat, crops, metabolomics, transcriptomics, genomics, physiology, predictive biology	In the Melandri Lab we investigate physiological and biochemical mechanisms able to confer heat and drought stress tolerance to crops and we try to identify their genetic control. In doing so, we target a widened pool of genetic diversity for major crops, such as sorghum and cotton, in the attempt to bring in the effect of novel alleles. Our research approach employs a mix of physiological phenotyping, omics analyses, predictive modeling, and genetic mapping that we apply to field trials conducted in the Arizona low desert.	UBRP
Laura	Meredith	lauram9@math.arizona.ed u	http://www.laurameredith.com	School of Natural Resources & the Environment	microbial genes, soil microbes, VOC, Biosphere 2	Research in the Meredith Lab focuses on microscopic life and its immense impact on atmospheric composition. Our work addresses the following fundamental questions about microbe-mediated gas fluxes: Which microorganisms, enzymes, and genes drive specific gas fluxes and why? How can we scale up from genes, enzymes, and microbes to ecosystem-scale soil fluxes given the enormous complexity and structure of soils and the wide-ranging scales (nanometers to kilometers) involved? In ecosystems, what other biological interactions (competition, plant-microbe interactions) and abiotic factors (temperature, moisture, land use) affect the ecosystem-scale soil fluxes? We seek an undergraduate research assistant to work on one or more of the following: bioinformatics analyses of sequence data, extraction of DNA and RNA from soils for sequencing, soil sampling and characterization, and/or trace gas flux measurements. There are no prerequisites- we will teach you what you need to know- making this is a great opportunity to gain research experience. We are looking for willingness to learn, enthusiasm for the project, and the ability to work both in a team and independently. This project would be of particular interest to students in the biological, earth, or computer sciences, but students from any major are encouraged to apply.	UBRP

Laura	Miller	lauram9@math.arizona.ed u	https://sites.google.com/site/swimfly pump/home?authuser=0	Mathematics	biomechanics, mathematical biology, marine biology	The focus of my research program is to mathematical models to reveal the developmental andevolutionary significance of fluid dynamic forces in biological systems. In particular, my researchgroup has focused on how organisms have evolved to increase fluid transport and locomotionefficiency, the way fluid forces constrain biological design, and the influence of fluid scalingeffects during animal development. Some of our work has focused on developing mathematicalmodels and experiments to describe the pumping mechanics of embryonic and tubular hearts,fluid transport through biological filtering layers, and the aerodynamics of flight in the smallestinsects. To study these problems, we have used a three-pronged approach that consists of measurements of morphology and kinematics in actual animals, the use of physical models tomeasure forces and flow velocities, and numerical simulations to understand the fluid dynamicsof systems that are difficult to approach experimentally.	UBRP
David	Moore	davidjpmoore@email.arizo na.edu	<u>https://nature.arizona.edu/david-</u> moore	Natural Resources & the Environment	ecosystem ecology, plant physiology, remote sensing, ecological modeling, biogeochemistry	Our lab's research centers on the changing role of ecosystems in the carbon cycle and the feedbacks between ecosystems and the climate. We use a broad range of techniques from simple measures of plant growth to advanced sensors to understand plant and ecosystems from local to global scales. A major theme of our research is understanding the controls of carbon, water and energy exchange between the land and the atmosphere. We use satellite monitoring and mathematical models across the world and have periodic field research projects in Arizona and Colorado.	UBRP
Oliver	Monti	monti@arizona.edu	https://sites.google.com/view/labmo ntiquantum	Chemistry and Biochemistry	renewable energy, solar cells, novel low-power electronics, single molecule electronics	In LabMonti, we create the future of electronics: We make circuits from single molecules, at the absolute limit of what can be imagined; we find better ways to harvest sunlight to produce power, and we invent new ways to store and process information that have a sustainable energy use footprint for a green future.	UBRP

Lisa	Nagy	Inagy@arizona.edu	https://mcb.arizona.edu/profile/lisa- nagy	Molecular & Cellular Biology	molecular biology, genomics, evolution	The Nagy lab has been studying the clock that generates segments in insect embryos. The simplest question is whether an insect that adds segment one by one will have stripe-specific enhancers or will function via a simpler clock enhancer. The research combines a classical approach to enhancer function with bioinformatics and high throughput genomics. We use bioinformatic/Al tools to predict transcription factor binding sites within the even-skipped locus. We clone putative beetle eve enhancers into expression vectors and make transgenic flies (generated commercially) and beetles (generated in the lab) expressing the enhancefluorochrome fusions. We then analyze the enhancer driven expression patterns using immunohistochemistry, HCR (hybridization chain-reaction) and live imaging. Students can participate in multiple aspects of this project and learn cutting edge molecular, cellular, bioinformatic and imaging techniques.	UBRP
Jon T.	Njardarson	njardars@arizona.edu	https://njardarson.lab.arizona.edu/	Chemistry and Biochemistry	organic chemistry, synthesis, optical imaging, ALS, Parkinson's	Students in my laboratory are trained to become expert synthetic organic chemists capable of building/making ANY organic architecture. Our collaborative efforts focus on using synthetic mastery to make molecules for making new materials and on the drug discovery front towards ALS and Parkinsons as examples.	UBRP
Ravishankar	Palanivelu	rpalaniv@arizona.edu	https://ag.arizona.edu/research/ravil ab/	Plant Sciences	development, genomics, genetics, cell biology	Our lab is using plant reproduction to understand the genetic mechanisms that mediate cell-cell interactions in plants. Two specific projects that build on these efforts include: 1) Generating heat tolerant tomato varieties using contemporary genomic approaches, and 2) Overcoming reproductive hybridization barriers in Brassicaceae model plants so that we can generate tools to break species barrier and generate novel hybrids	UBRP

Salma	Patel	salmapatel@email.arizona.	https://deptmedicine.arizona.edu/pro file/salma-i-patel-md-mph	Medicine	jet lag, randomized control trial, Exercise, melatonin, light, retrospective, electrocardiogram, sleep apnea, QTc, arrhythmias, sleep medicine	Project #1: The Jet Lag Study. Following a 1 week home baseline, jet lag participants spend 6 days in the laboratory . Participants are randomized to one of 3 treatments administered each of the 3 days of the shifted schedule: (1) placebo control, (2) bright light, and (3) bright light + exercise + melatonin. Mentee roles may include screening and consenting participants, following the step by step protocol, administering study related activities such as questionnaires and cognitive testing, preparing meals and general study participant oversite, depending on your availability and subject recruitment. When the participant is in the lab for the week, all study staff are expected to do a late night or very early morning shift. All training will be provided. Project #2: Sleep apnea and arrhythmia study. This is a retrospective review of existing raw data signals for sleep studies to identify propensity for arrhythmias in patients with obstructive sleep apnea based on electrocardiogram findings. Mentee will learn how to look at sleep studies, download raw data files and perform electrocardiogram analysis based on stage of sleep and treatments being administered. Once trained, the mentee will function independently to perform downloads and analyses which are relevant to the fields of sleep and cardiovascular medicine.	UBRP
Jeanne	Pemberton	pembertn@arizona.edu	<u>https://cbc.arizona.edu/faculty/jeann</u> <u>e-e-pemberton</u>	Chemistry and Biochemistry	biosurfactants, glycolipids, carbohydrate-based drug delivery materials	Glycolipids represent a wide range of molecules containing carbohydrates that can be used for many functional purposes. The Pemberton laboratory makes advanced functional materials from glycolipids and characterizes their properties using a wide array of instrumental techniques (NMR spectroscopy, optical spectroscopies, mass spectrometry, chromatography, light scattering, electron microscopy, thermal methods, rheometry, etc.)	UBRP
Elena	Plante	eplante@arizona.edu	http://plante.lab.arizona.edu/	Speech, Language & Hearing Sciences	language, behavior, learning, developmental language disorders	The work of the lab centers on the identification and behavioral treatment of children and adults who have a developmental language disorder. This disorder affects the ability of individuals to acquire and use language for listening, speaking, reading, and writing. These language deficits are not due to sensory, motor, or cognitive deficits. The lab develops new methods to accurately identify these individuals so that they can receive services. It also examines how these individuals learn and how cognitive systems interact to support or limit learning. This basic information is translated to treatment studies designed to improve learning.	UBRP

Kristen	Pogreba Brown	kpogreba@arizona.edu	https://kpogrebabrown.faculty.arizon a.edu/	Epidemiology & Biostatistics	public health, epidemiology, Enterics, Covid-19, foodborne illness, One Health, Campylobacter, gastrointestinal, Long Covid, SAFER, Biostatistics, case investigation, contact tracing, shigella, CoVHORT	The Student Aid for Field Epidemiology Response (SAFER) team was created at the University of Arizona as part of the College of Public Health. SAFER provides opportunities for students to apply their learning in the classroom to a practical setting. SAFER was developed to provide health departments with a team of trained and experienced students who could help the health departments across the state with outbreaks or emergency response. SAFER continues to conduct routine surveillance of enteric disease for the Maricopa County Department of Public Health. In addition, SAFER has played a vital role in the county's public health response to CoVID-19 over the past two years. As positive cases were on the rise, the SAFER team led by Dr. Kristen Pogreba-Brown jumped in to help make case investigation and contact tracing system for the students/faculty at the University of Arizona and helped organize the vaccine point of distribution on campus. Our current research involves the Arizona CoVHORT study which is a prospective cohort study with the goals of determining the direct and indirect impact of the CoVID-19 pandemic in Arizona. Our research is specifically interested in "long CoVID" in patients that have prolonged symptoms.	UBRP
Robin L.	Polt	polt@u.arizona.edu	https://bio5.org/people/robin-polt	Chemistry and Biochemistry	glycopeptides, synthesis, drug design	Much of our work revolves around converting peptide neurotransmitters and hormones into brain penetrant glycopeptide drugs. Beginning students synthesize glycoside starting materials and then assemble them into glycopeptide drug candidates as they progress. Students also use MOE (Molecular Operating System) to design structures "in silico."	UBRP
Frank	Porreca	frankp@arizona.edu	https://pharmacology.arizona.edu/pe rson/frank-porreca-phd	Pharmacology	Pain, migraine, headache	My laboratory studies brain circuits that mediate acute and chronic pain and migraine. We study opioid receptor sensitive circuits in areas of the brain including the amygdala and the cortex. Our studies also explore sexually dimorphic mechanisms that can promote pain more readily in females.	ASPET, UBRP
Schomer	Rebecca	rschomer@arizona.edu	https://cals.arizona.edu/spls/content/ rebecca-0	Plant Sciences	microbial physiology, bacteria, genetics, genomics, Plant Pathogens, Host-Microbe	The Schomer Lab studies how bacteria perceive and respond to their chemical environment. We use molecular and genetic techniques to understand how bacteria integrate complex environmental and plant host signals into behavioral and metabolic responses. We are focused on understanding the microbial physiology, mechanisms, and signals that allow bacteria to locate preferred soil niches, or colonize rhizospheres and host plants.	UBRP

Kristen	Renner	kristenrenner@arizona.ed u	https://apl.arizona.edu/	Orthopedic Surgery	Motion Capture, Wearable Devices, biomechanics, Orthopedics, Joint Replacement	My lab uses a multidisciplinary approach to promote the restoration of normal, functional movement as a means of improving the overall health and quality of life of individuals across their lifespan. Dr. Renner's current research interests focus on optimizing total joint replacement outcomes and developing models to assess and mitigate sports injury risk and return to sport criteria after injury.	UBRP
Benjamin	Renquist	bjrenquist@arizona.edu	<u>https://renquist.lab.arizona.edu/</u>	Animal and Comparative Biomedical Sciences	diabetes, Hypertension, Obesity	The Renquist lab is focused on understanding obesity induced insulin resistance and hypertension. We aim to understand the interorgan communication that results in these diseases and to develop therapeutics to treat these diseases. Our research relies heavily on genetically manipulated mouse models.	UBRP
Linda L.	Restifo	llr@arizona.edu	https://neurology.arizona.edu/linda-l- restifo-md-phd	Neurology	genetics, brain development, disease, biomechanics	2022 project: Stretch-triggered axon elongation. This is a great project for a bioengineering-oriented student with some knowledge of basic genetics and an interest in neuroscience. The technical goal is to use biological adhesives (e.g., barnacle glue) to develop a stretching protocol for the central nervous system (CNS) of the fruit fly. The biological goal is to determine whether the CNS is stretch-sensitive at key points during development and whether this proposed mechanism is defective in two different Drosophila mutants that fail to elongate an axon bundle that connects the brain to the spinal cord.	UBRP
Kelly	Reynolds	reynolds@arizona.edu	https://esrac.arizona.edu/	Community, Environment & Policy	Environmental microbiology, hygiene, risk assessment, water quality	Dr. Reynolds is Professor and Chair of the Department of Community, Environment and Policy at the Zuckerman College of Public Health, and Director of the Environment, Exposure Science and Risk Assessment Center at the University of Arizona. She has over 34 years of experience as an environmental microbiologist and infectious disease researcher, specializing in water quality, food safety, and human health risk assessment. During her academic career, Dr. Reynolds has served as a principal investigator on numerous projects and published over 400 journal articles, book chapters, and professional reports. Her work has been featured in hundreds of popular media outlets, including the New York Times, Wall Street Journal, BuzzFeed, and Huffington Post. Dr. Reynolds specializes in integrating academic teams with industry and community stakeholders for a multidisciplinary approach toward research, communication, and management efforts in infection prevention.	UBRP

Michael A.	Riehle	mriehle@ag.arizona.edu	https://www.riehlelab.org/	Entomology	mosquitoes, vector biology, arbovirus, malaria, fitness, transgenic, insulin, CRISPR, cas9, physiology, insect	I am interested in mosquito physiology and the interactions between mosquitoes and human pathogens such as malaria parasites, dengue virus and Zika virus. My lab is currently exploring how various signaling pathways, such as JNK and the insulin/insulin growth factor 1 signaling pathways, affect aging, reproduction, metabolism, development and immunity in mosquitoes. We are also looking to harness these signaling cascade as novel control strategies for mosquito-borne disease using cutting edge genetic manipulation strategies, including most recently CRISPR/cas9. I am interested in mosquito physiology and the interactions between mosquitoes and human pathogens such as malaria parasites, dengue virus and Zika virus. My lab is currently exploring how various signaling pathways, such as JNK and the insulin/insulin growth factor 1 signaling pathways, affect aging, reproduction, metabolism, development and immunity in mosquitoes. We are also looking to harness these signaling cascade as novel control strategies for mosquito-borne disease using cutting edge genetic manipulation strategies, including most recently CRISPR/cas9.	UBRP
Lee	Ryan	ryant@u.arizona.edu	http://cnl.web.arizona.edu/leeryan.ht m	Psychology	memory, aging, Alzheimer's Disease, MRI, neuroimaging	Neurological basis of memory and memory disorders, aging and memory, and risk for Alzheimer's disease. Functional magnetic resonance imaging.	UBRP
Todd	Schlenke	schlenke@arizona.edu	https://cals.arizona.edu/research/schl enke/	Entomology	Drosophila, immunity, virulence, behavior, genetics, Evolution	Our lab studies host-parasite interactions using the fruit fly, Drosophila melanogaster, as our model host. One common parasite of flies are parasitoid wasps, which lay their eggs inside fly larvae. Flies fight off wasp infection using thousands of blood cells to attack the wasp egg, similar to human granulomas. Flies also have behavioral defenses to avoid infection or to cure themselves once infected. We study the genetics and cell biology of immunological and behavioral defenses.	UBRP
Timothy W.	Secomb	secomb@u.arizona.edu	http://www.physiology.arizona.edu/p eople/secomb/	Physiology	mathematical modeling, circulatory system, physiology	We use theoretical and computational approaches to study the circulatory system, including blood flow and mass transport, structural adaptation of blood vessels, regulation of blood flow, mechanics of the heart, and neurovascular coupling in the brain.	UBRP

Catharine L.	Smith	csmith@pharmacy.arizona .edu	http://www.pharmacy.arizona.edu/di rectory/catharine-smith-phd	Pharmacology & Toxicology	epigenetics, molecular endocrinology, cancer	Glucocorticoid signaling regulates the immune system, lung function, and metabolism, among other things, and is essential for life. Lysine/histone deacetylases are important regulators of the epigenome and targets of drugs used in treatment of cancer and neurological disorders. The Smith lab studies mechanisms by which the glucocorticoid receptor regulates transcription and discovered that lysine deacetylases facilitate rather then impair glucocorticoid- activated transcription. Our current focus is to understand the mechanism by which this occurs and identify the essential acetylated target proteins.	NACP, UBRP
Shang	Song	shangsong@arizona.edu	<u>https://songlab.arizona.edu/</u>	Biomedical Engineering	biomaterials, stem cells, molecular biology techniques	The Song lab is interested in combining biomaterials, bioengineering techniques (e.g. bioprinting and microfabrication) and stem cell therapeutics to develop new strategies for tissue engineering. Our lab uses different engineering approaches to manipulate cellular microenvironment for neural and cancer applications.	UBRP
Jennifer	Stern	jhstern@arizona.edu	<u>https://stern.lab.arizona.edu/</u>	Medicine	aging, Obesity, Type 2 diabetes, glucoregulatory hormone signaling	Stern Lab research aims to understand the role of glucoregulatory hormone signaling in the pathogenesis of obesity, type II diabetes mellitus, and aging. The Stern lab investigates mechanisms in mouse models of aging and obesity with the goal of applying our findings to the clinic to improve the prevention and treatment of diabetes and age- related metabolic disorders.	UBRP
John M.	Streicher	jstreicher@arizona.edu	http://medicine.arizona.edu/person/j ohn-m-streicher-phd	Pharmacology	Opioids, Cannabinoids, Pain, Signal transduction, drug discovery, drug development	The Streicher Lab is interested in the signal transduction cascades that link receptor systems like the opioid, cannabinoid, dopamine, and related receptors to downstream changes in brain states like pain, reward, and neurodegeneration. We investigate novel signal transduction regulators, and determine their molecular mechanisms using tools like CRISPR and immunohistochemistry. We then use these mechanisms to design novel drug discovery and development programs to make new and improved human medicines for conditions like pain and neurodegeneration.	ASPET, UBRP
Во	Sun	bosun@pharmacy.arizona. edu	https://www.pharmacy.arizona.edu/d irectory/profile/bo-sun-phd	Pharmacology and Toxicology	Pharmaceutics, drug delivery, biomaterials, cancer, immunotherapy	Dr. Sun's research aims to exploit the techniques in synthetic chemistry, immunology, medicine and nanotechnology to develop safe and effective therapies for patients with cancer or other life-threatening diseases.	UBRP

George	Sutphin	sutphin@arizona.edu	https://sutphinlab.org	Molecular & Cellular Biology	aging, genetics, cancer, metabolism, cellular stress, machine learning, Robotics	The goal of our research is to understand the mechanisms that drive biological aging and use this understanding to develop new therapeutic interventions to extend healthy lifespan and age-associated disease. We use roundworms (C. elegans), mice, and cultured cells as model systems. Current areas of focus are on the role of tryptophan-kynurenine metabolism in aging, immune function, and cancer, understanding the interaction between cellular stress response pathways during aging, and methods development for high-throughput healthspan and lifespan analysis in roundworms.	UBRP
Jennifer	Teske	teskeja@arizona.edu	https://nutrition.cals.arizona.edu/per son/jennifer-teske-phd	Nutritional Sciences & Wellness	Sleep, metabolism, metabolic dysfunction	We use animal models to understanding how poor sleep contributes to metabolic dysfunction with emphasis on neural mechanisms.	EHS- TRUE, UBRP
Gregory	Thatcher	grjthatcher@arizona.edu	https://thatcherresearchgroup.com/	Pharmacology & Toxicology	therapeutics, bioassay, disease models, biochemistry, Medicinal Chemistry	Disease-agnostic drug discovery from COVID and cancer to Alzheimer's and dementia demands bioassays that model aspects of the disease and/or specific therapeutic targets that may be associated with the disease state. Designing and validating these biochemical, cell, and tissue models is the essential first step in being able to design and optimize small molecule therapeutic agents. Designing, trouble-shooting, and using these assays for drug screening and optimization provides a rigorous training in biochemical, bioanalytical, and biological methodology and critical thinking.	ASPET, UBRP
Jana	U'Ren	juren@arizona.edu	https://www.uren.arizona.edu/	Biosystems Engineering	symbiosis, fungi, genome evolution, microbial ecology	The U'Ren lab uses a combination of traditional culture- based microbiology, functional assays, and genomic/metagenomic tools to study the ecology and evolution of endophytic fungi. Specifically, we are interested in characterizing the biotic and abiotic factors that shape the assembly of endophyte communities in natural and agricultural ecosystems, how endophyte community structure and diversity impact ecosystem function and plant health, and the evolutionary dynamics of fungal symbiont evolution.	UBRP
Todd W.	Vanderah	vanderah@arizona.edu	https://pharmacology.arizona.edu/pe rson/todd-vanderah-phd	Pharmacology	Pain, addiction, Cannabinoids, Opioids	I work in the field of chronic pain and addiction. Our research is discovering new molecular targets to reduce chronic pain while not resulting in the rewarding behaviors that can lead to addiction.	ASPET, UBRP
Donata	Vercelli	donata@arizona.edu	https://cmm.arizona.edu/profile/don ata-vercelli-md	Cellular & Molecular Medicine	asthma, allergies, immune response, environment	Dr. Vercelli's research seeks to elucidate the impact of environment, genes and development on the pathogenesis of complex diseases. To this end, her laboratory has developed powerful mouse and human models of asthma- protective environmental exposures, particularly those associated with traditional farming.	UBRP

Russell S.	Witte	rwitte@arizona.edu	<u>http://www.u.arizona.edu/~rwitte</u>	Medical Imaging	brain, heart, ultrasound, optical, photoacoustic, imaging, EEG, electrophysiology, modeling, biomedical engineering, optical sciences, simulation, acoustoelectric	My experimental and neural imaging lab (EUNIL) develops cutting-edge noninvasive imaging modalities that combine ultrasound, light and/or electricity (scalable from mouse to humans). These hybrid techniques exploit novel contrast mechanisms to visualize mechanical, electrical and optical properties of tissue. As an example, acoustoelectric imaging exploits and interaction between an ultrasound wave and tissue resistivity to detect and map physiologic currents in the heart and brain at higher spatial resolution than conventional methods (e.g., ECG, EEG). The techniques can also be combined with therapy systems (e.g., neuromodulation) to optimize treatment paradigms. The methods and instrumentation developed in EUNIL have a wide range of neural (and non-neural) applicationsfrom helping diagnose and treat epilepsy to neuroprotection following a traumatic brain injury.	UBRP
Melville Georg T.	Wohlgemuth Wondrak	wohlgemuth@arizona.edu wondrak@arizona.edu	https://arizonabatlab.com/ https://www.pharmacy.arizona.edu/d	Neuroscience Pharmacology &	Behavioral neuroscience, active sensing, Sensorimotor integration, neuroethology cancer, oxidative stress, skin	Our lab is interested in how the brain uses information from the environment to adapt natural behaviors. To study these phenomenon in the laboratory, we exploit the advantages of the echolocating bat as a model for natural brain function. We research how the bat brain uses echo information to modify behavior on both a moment-by-moment basis, as well as over longer time periods for its goal-directed hunting behaviors. My research examines the pathological role of oxidative	UBRP NACP,
			irectory/profile/georg-wondrak-phd	Toxicology	photodamage, melanoma, redox drugs	stress in solar photodamage and skin cancer (melanoma and nonmelanoma) aiming at the design of novel molecular strategies for redox-directed prevention and therapeutic intervention, investigations with potential relevance to other malignancies with insufficient treatment options including prostatic and pancreatic carcinoma. Based on my international professional training and proven track record in skin solar ultraviolet radiation/photodamage-related biochemical and pharmacological investigations, my research team at the College of Pharmacy and The University of Arizona Cancer Center is well positioned to pursue translational biomolecular investigations that test preventive and therapeutic efficacy of pharmacological modulation of cellular stress response pathways impacting skin photo- damage and photo-carcinogenesis through redox regulatory molecular targets [such as TLR4 (Toll-like receptor 4), NRF2 (Nuclear factor erythroid 2 related factor 2), and GLO1 (Glyoxalase 1)]. Our NCI-funded melanoma-directed research tests feasibility of repurposing clinical redox antimalarials (including artemisinin-endoperoxides) for therapeutic intervention in advanced murine disease models. We are also testing the redox-based cancer-directed activity of diverse small molecule agents modulating the cellular stress response.	UBRP

Jesse	Woodson	jessewoodson@arizona.ed u	https://www.woodsonlab.arizona.edu	Plant Sciences	Organelle biology, genetics, molecular biology, cell biology, response to the environment, photosynthesis	Research in my lab focuses on a fundamental question in biology; how do organisms sense their environment and acclimate? Because they are sessile, plants must use a wide range of sophisticated environmental signaling mechanisms to minimize stress so that they can thrive. Our goal is to identify and characterize these signals so that we can predict and manage plant health.	UBRP
Hua	Xu	hxu@arizona.edu	<u>https://peds.arizona.edu/faculty/hua-</u> <u>xu</u>	Pediatrics	gene regulation, inflammation, ion transporter, organoid culture	Na+/H+ exchangers (NHEs) are a family of membrane proteins that transport one sodium ion into cells by exchanging one proton out of cells. These proteins have critical roles in many physiological and pathological processes. They are involved in electroneutral NaCl transport, acid-base regulation, intracellular pH homeostasis, and cell volume regulation. Their activity also facilitates cellular adhesion, migration, and proliferation. Each member of the NHE family has its unique tissue distribution, cellular localization, inhibitor sensitivities, and physiological regulation. Since cloning the newest NHE family member NHE8, my research focuses more on the role of NHE8 in the gastrointestinal tract, the liver, colon cancer, the eye and male reproductive function.	UBRP
Ramin	Yadegari	yadegari@arizona.edu	http://raminyadegari.org	Plant Sciences	development, Plants, endosperm, seed, transcription, gene networks, maize, sorghum	Our research is focused on understanding the transcriptional regulatory processes that underlie endosperm development in maize (corn). Endosperm is the nutritive structure of the seed and supports embryogenesis and seedling development in flowering plants. We employ molecular and computational approaches to identify the gene networks regulated by key transcription factors driving endosperm cell proliferation and differentiation. Currently, our studies are focused on the role of gene networks driving the development of an endosperm transfer cell that has evolved to transport sugars and metabolites from the maternal plant into the developing maize kernel.	UBRP
Guang	Yao	guangyao@arizona.edu	http://www.u.arizona.edu/~guangyao	Molecular & Cellular Biology	systems biology, genetics, cancer, aging, regeneration	We study gene network "switches" that control the dormancy and growth of normal and cancer cells. Currently, our particular focus is on the distinction and connection between two dormant cellular states, quiescence (reversible) and senescence (irreversible), both being regulated by an Rb-E2F-Cdk gene network switch and its interacting pathways (e.g., cell metabolism and circadian rhythm). We aim to develop an integrated understanding of different cell dormancy states and their implications in anti- cancer, anti-aging, and regenerative medicine.	UBRP
Jeong-Yeol	Yoon	jyyoon@arizona.edu	http://biosensors.abe.arizona.edu	Biomedical Engineering	biosensor, organ-on-a-chip, machine learning, Medical diagnostics, environmental monitoring	Smartphone- and machine learning-based biosensors and organ-on-a-chip for medical diagnostics, drug testing, and environmental monitoring.	EHS- TRUE, UBRP

Frederic	Zenhausern	fzenhaus@arizona.edu	https://phoenixmed.arizona.edu/anb m	Basic Medical Sciences	molecular and cellular assays, organ- on-chips, radiobiology, space medicine, diagnostics	The Center or Applied Nanobioscience and Medicine's research projects are sponsored by industry and most of federal agencies (e.g. NIH, DoD, NASA) highlighting the interdisciplinary and translational nature of the work. Some current areas of technology development comprise organ-on chip and microfluidic devices for drug discoveries, point-of- care medical devices, bioassay development for broad applications in cancer biology, radiobiology, microbiome, molecular diagnostics, global health, space medicine and new drug compounds and delivery systems for personalized medicine. The developments in other fields of engineering comprise technologies for DNA data storage, drone delivery systems, AR/VR avatar platform, quantum sensing and so on.	UBRP
Ningning	Zhao	zhaonn@arizona.edu	https://nutrition.cals.arizona.edu/per son/ningning-zhao-phd	Nutritional Sciences & Wellness	Minerals, nutrition, neurodegeneration, Iron deficiency, Iron overload, Manganese Metabolism	The work in our Lab is focused on advancing molecular mechanisms for the function and regulation of plasma membrane metal transporters. These transporters play fundamental roles in regulating cellular metabolism and cellular function. Mutations and malfunctioning of these transporters are directly pertinent to the initiation and the progression of an increasing number of human diseases, including iron deficiency, hemochromatosis, cancer, and childhood on-set neurodegeneration. We identify and characterize the genes and factors that are involved in determining the structure and function of these metal transporters. We also examine the intracellular trafficking and degradation of these proteins. In our research, we combine cell-line and mouse models, and employ a variety of biochemical and molecular biology techniques. We also utilize the cutting-edge genome engineering technologies, including Adeno-Associated Virus-mediated genomic modification and CRISPR/Cas9-mediated genome editing. We hope that our research will advance the understanding of disease mechanisms, identify therapeutic target genes, and improve the life quality of patients.	UBRP
Haining	Zhu	haining@pharmacy.arizon a.edu	https://www.pharmacy.arizona.edu/d irectory/profile/haining-zhu-phd	Pharmacology & Toxicology	RNA metabolism, protein translation, neurodegenerative diseases, ALS	Our research is broadly defined as RNA metabolism and human diseases. The current focus is on RNA decay and protein translation in the context of neurodegenerative diseases and cancer.	UBRP
Yitshak	Zohar	zohar@ame.arizona.edu	http://www.ame.arizona.edu/staff/in dex.php?ID=105	Aerospace & Mechanical Engineering	Biomicrofluidics, microscale fluid mechanics, heat transfer, microfluidic technology, cancer	Organs-on-chips, mainly for cancer research	UBRP